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A method is given for solving the Prandtl equations for adiabatic gas
flow in a plane-parallel channel at Pr = 1, The method is based on
reduction of the Prandtl equations to an approximate system of ordinary
quasilinear, first-order differential equations and can be used to solve
more complicated problems.

We shall consider adiabatic developed gas flow with
Pr = 1 in a plane channel with parallel walls. We take
as the velocity scale the limiting velocity; asthe temper-
ature scale, the stagnation temperature; as the pres-
sure and density scales, the stagnation pressure and
density at the center of the initial cross section; as
the viscosity-coefficient scale, its value at the center
of the initial cross section at the stagnation tempera-
ture; as the transverse-coordinate scale, one half the
channel width (h); and as the longitudinal-coordinate
scale the value hRe, where Re is defined over h and
the above-mentioned viscosity.

Below, all values are dimensionless, The prime
indicates differentiation with respect to x. The system
of equations in the Prandtl approximation is written as
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Here, k = (k — 1)/2k.
For the dependence of the viscosity on the tempera-
ture T = 1 — u®, we take the power relation

p=(1—u2f (5)

We approximate the longitudinal-velocity profile by
the polynomial

u= X {0y, (6)
i=1

where the coefficients f;(x) are unknown functions of x.
We shall require that profile (6) satisfy (1) near the
wall. -
We substitute Repv from (2),
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and also p and p from (3) and (5) into (1). Expanding
the left side of the obtained equation into a series in y,
we find '
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where ¢; is a function only of x.
If we let
=P =¢=... =q,1=0, (8)

Eq. (1) will be satisfied near the wall.
Now we require that profile (6) satisfy Eq. (1) near
the channel axis. For this we represent (6) as

L
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Note that F; can be expressed in terms of fj. These
expressions are easy to find from the condition of
coincidence of polynomials (6) and (9):
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Considering that v|y=; = 0, from (2) we find
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and, as in the previous case, we obtain
Dy + D; (1—y) + Do (1—y)* + ... =0,

where &; are functions only of x.
Letting

Op=Dy=Dy=...=D,_, =0, (11

we satisfy (1) near the channel axis.
To I + m equations (8) and (11) we join three others:
a) the condition of conservation of flow rate (4);
b) the momentum equation

1
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¢) the relation (8u/8y)y=1 = 0, which follows from
the condition of maximum velocity at the channel axis.,

The obtained system of [ + m + 3 equations makes
it possible to find n + 1 unknowns (p, 1y, f3, ..., fn)
fl+m=n—2, To find these unknowns, we must
specify the initial conditions p|x=y, fjlx=¢-

The method can be extended to more complicated
cases, for example, flows with heat transfer, flows in
convergent channels, etc.
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As an example, let us consider the solution of the
following problem. Let there be a parabolic velocity
distribution when x = 0:

u=U 2y —y?. {(13)

If the fluid was incompressible, then profile (13)
would be retained over the entire extent of the flow,
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Fig, 1. Friction coefficient versus mean

mass flow rate: 1) first approximation;

2) second approximation; 3) variation of

the degree of filling of the velocity pro-
file in the second approximation.

and U would remain constant, and for this reason the
friction coefficient ¢ = STO/ETéGw, where w is the mean
mass flow rate, would also be constant, In the caseof
a gas, the profile must be deformed, and, because of
this, the coefficient ¢ must vary.

Let us consider two cases: a) we satisfy only inte-
gral relations (4) and (12) and the condition (8u/8y)y=1 =
= 0 {first approximation); and b) besides the three
equations of a), we satisfy one relation near the wall
and one near the axis ¢y = 0 and @y = 0 (second ap-
proximation).

In approximating polynomial (6) we should let n = 2
in case a) and n = 4 in case b).

The values ¢g and &; are easily found from (1):
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In the latter equation, ¥y and F, are expressed in
terms of f; according to (10).

Assuming that V in (13) is known, it is easy to find
G according to (4) and (3):

1
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where
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In accordance with (13), the initial conditions for f,
and f, in cases a) and b) are

=, fa=—U.

In case b), when x = 0 we must have f3 = f; = 0.
Figures 1 and 2 show some results of calculations
in whichk=1,4, =1, and U = 0.1, The reduced
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where

ig plotted on the axis of the abscissas.
The friction coefficient ¢ was calculated by the
formula
_8h I
ReG I,
and adjusted to ¢|x=.
The degree of filling of the velocity profile w is
given by

o = [,/Fy1,.

In the first approximation, the degree of filling of the
profile is held constant, unlike the second approxima-
tion, in which w increases appreciably. The nature of
variation of the friction coefficient also differs. The
increase in ¢ in the second approximation agrees with
the known results of boundary-layer theory for exter-
nal problems [1] (an increase in A corresponds to an
increase in the negative pressure gradient).

In the first approximation, the velocity profile u/u,
is not deformed. The deformation of the velocity pro-
file in the second approximation is shown in Fig. 2.
As A increases, the profile, having become more
filled, moves closer to the wall, which increases the
friction coefficient.

The results indicate that purely integral methods
without contour relations should be used with caution,
since these methods can sometimes lead to results
that are far from true, both quantitatively and quali-
tatively.
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Fig. 2. Deformation of the velocity
profile in the second approximation:
DA=0.2; 2) A=0.69; 3)A =1.0.

The conclusions of this paper are in qualitative
agreement with those of [2] for turbulent flows: as a
critical region is approached, the velocity profile is
filled all the more intensively.
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NOTATION

x is the longitudinal coordinate; y is the transverse
coordinate; v is the transverse velocity; u is the
longitudinal velocity; p is the pressure; p is the den-
sity; u is the dynamic viscosity; k is the isentropic
exponent; G is the mass rate of gas discharge through
half-channel width; $ is the exponent in the power rela-
tion of the viscosity and temperature; A is the reduced
average mass rate; w is the degree to which the veloc-
ity profile is filled; ¢ is the friction coefficient.
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